P(75)=-0.5x^2+400x-5000

Simple and best practice solution for P(75)=-0.5x^2+400x-5000 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for P(75)=-0.5x^2+400x-5000 equation:



(75)=-0.5P^2+400P-5000
We move all terms to the left:
(75)-(-0.5P^2+400P-5000)=0
We get rid of parentheses
0.5P^2-400P+5000+75=0
We add all the numbers together, and all the variables
0.5P^2-400P+5075=0
a = 0.5; b = -400; c = +5075;
Δ = b2-4ac
Δ = -4002-4·0.5·5075
Δ = 149850
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{149850}=\sqrt{2025*74}=\sqrt{2025}*\sqrt{74}=45\sqrt{74}$
$P_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-400)-45\sqrt{74}}{2*0.5}=\frac{400-45\sqrt{74}}{1} $
$P_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-400)+45\sqrt{74}}{2*0.5}=\frac{400+45\sqrt{74}}{1} $

See similar equations:

| 0.125y=18.75 | | H=16t^2+180t | | 160+g=11g | | -5-5x+6x=5+3x | | 12x^2−13x+3=0 | | 6x=72×3 | | 3.99+1p=5p-0.11 | | 6.5x-5.3=20 | | 0=-16t^2+37t-21 | | 6m=14m-16m | | 6×=72;x=13 | | P(300)=-0.5(x)^2+400(x)-6,000 | | 9y-6=5y-6 | | 6×=72x=13 | | 62-50-y=4×3-12 | | 3x3+14=-6 | | P(100)=-0.5(x)^2+400(x)-6,000 | | 4.5=4y | | -3x+3+3(3x-3)=3 | | 4x–1=3x+8 | | 9-(1-3y)=4=y-(3-y) | | (-5n+7=) | | u/5-4=-14 | | 11x+6=3x+38 | | 6z-154=62 | | 2x+4=-10/3x+76/3 | | 3c+1.75=9.25 | | 7x+3(2x-3)-3(4x-5)=5x-2(3-4x)+3(2x+1) | | 22=4v+6 | | x-3/12=-5/12 | | p(20)=-0.5(20)^2+400(20)-6,000 | | x+2/3=-1/3x-1/6 |

Equations solver categories